top of page


Photocrosslinkable gelatin has become a hydrogel of choice for a wide range of cell types.

We have played a major role in its development.

Here are some of the key references.


Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel

Vigata M, Meinert C, Pahoff S, Bock N, Hutmacher DWA, Hutmacher DW.

Polymers 2020;12(2).


Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs

Pahoff S, Meinert C, Bas O, Nguyen L, Klein TJ, Hutmacher DW.

Journal of Materials Chemistry B. 2019;7(10):1761-72.


 Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo

Landgraf M, Lahr CA, Sanchez-Herrero A, Meinert C, Shokoohmand A, Pollock PM, et al.

Bone Research. 2019;7.


Immunogold FIB-SEM: Combining Volumetric Ultrastructure Visualization with 3D Biomolecular Analysis to Dissect Cell-Environment Interactions

Gopal S, Chiappini C, Armstrong JPK, Chen Q, Serio A, Hsu CC, et al.

Advanced Materials. 2019;31(32).


Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study.

Shafiee A, McGovern JA, Lahr CA, Meinert C, Moi D, Wagner F, et al.

International Journal of Cancer. 2018;143(6):1470-82.


A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels.

Meinert C, Theodoropoulos C, Klein TJ, Hutmacher DW, Loessner D.

Methods in Molecular Biology. 2018;1786:175-94.


Humanization of the Prostate Microenvironment Reduces Homing of PC3 Prostate Cancer Cells to Human Tissue-Engineered Bone.

McGovern JA, Shafiee A, Wagner F, Lahr CA, Landgraf M, Meinert C, et al.

Cancers. 2018;10(11).


Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach.

Bas O, Lucarotti S, Angella DD, Castro NJ, Meinert C, Wunner FM, et al. 

Chemical Engineering Journal. 2018;340:15-23.


Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning.

Armstrong JPK, Puetzer JL, Serio A, Guex AG, Kapnisi M, Breant A, et al.

Advanced Materials. 2018;30(43).



Biofabricated soft network composites for cartilage tissue engineering.

Bas O, De-Juan-Pardo EM, Meinert C, D'Angella D, Baldwin JG, Bray LJ, et al.

Biofabrication. 2017;9(2).


Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms.

Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, et al.

Nature Protocols. 2016;11(4):727-46.


A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. 

Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, Malda J, Klein TJ.

Acta Biomaterialia. 2014;10(1):214-23.


Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels.

Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, Malda J, Klein TJ. 

Journal of Biomedical Materials Research A. 2014;102(8):2544-53.


Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs.

Levett PA, Hutmacher DW, Malda J, Klein TJ.

Plos One. 2014;9(12).


Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs.

Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, et al.

Macromolecular Biosciences. 2013;13(5):551-61.


Photocrosslinkable hydrogels for cartilage tissue engineering. 

Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ.

Journal of Tissue Engineering and Regenerative Medicine. 2012;6:68-.

bottom of page